If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5a^2-7a-3=0
a = 5; b = -7; c = -3;
Δ = b2-4ac
Δ = -72-4·5·(-3)
Δ = 109
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{109}}{2*5}=\frac{7-\sqrt{109}}{10} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{109}}{2*5}=\frac{7+\sqrt{109}}{10} $
| 4x-4+6x-12=x+16-12x | | (w/2w-3)=(4/w) | | 6÷c=6 | | 4x-8-6+2x=12-4x-10+2x | | 154=9x+3 | | *a÷0.05=140 | | 2f−1=1 | | x+8-x=2x-4 | | 3x+11=27−5x | | 0.00000000004=x^2+0.01x | | 16+4x-6=6x-12 | | 4x10^-11=x^2+0.01x | | 5a-7a-3=0 | | 105/n=35 | | 5(—11)=3x-43 | | 9d^2=225 | | 10=u/5-15 | | 7x+4=104−3x | | 10(2y-4)=(6-9y)+3y | | -3/5x+8=-16 | | 40=4(x+9) | | -3/5x-4=-5 | | 10x=60+-2 | | 10x=60-2 | | 9(x+5)=-108 | | N-8=4(n+8)-7n | | 2(3y+4=32 | | 3(2g-1)=8+g | | 15x-13=2x+8 | | 15x-13=4x+8 | | 39+2.50s=51.50 | | 2×+3y=12 |